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Abstract. The competition between strong electronic correlations and charge ordering due
to an external potential are studied in the infinite-U Hubbard model by means of the slave-
boson technique. The quasi-particle screening of the external potential produces a reduction of
the charge-density-wave amplitude with respect to the non-interacting (i.e.U = 0) case. The
mechanism becomes more and more effective as the number of electrons per site is increased
towards unity.

1. Introduction

The investigation of the competition between charge ordering and strong on-site electronic
correlations is usually complicated by the fact that in most physical systems the mechanism
that leads to the appearance of a charge-density wave (CDW) is the electron–electron
interaction, and/or the coupling of electronic density to the lattice. The technical task of a
proper treatment of such interaction terms in the intermediate- to strong-coupling regime,
which is of relevance in the case of competing strong correlations and charge ordering [1],
makes the results inconclusive.

There are however systems in which the driving forces for CDW formation are provided
by the chemical environment. Such is for instance the case forπ -chains on the Si(111)
and C(111) reconstructed surfaces [2], where a charge modulation is produced by the
external (crystal) field imposed on the surface by the bulk. In the presence of an efficient
screening mechanism associated with a corresponding modulation of the substrate, the intra-
atomic interaction among theπ -electrons is the largest and most relevant contribution to
the Coulombic interaction. This term may be treated in the Hartree–Fock approximation in
the weak-coupling limit, and by means of the Kotliar–Ruckenstein slave bosons [3] in the
intermediate- to strong-coupling regime. In this paper I address the issue of the competition
between such anexternalCDW and an infinitely strong intra-atomic repulsion, within the
framework of the infinite-U Hubbard model. This limiting case represents a simplification
from the point of view of the slave-boson technique, since a single slave-boson operator
is required. The calculations become thus more transparent, and it is possible to provide a
simple quasi-particle interpretation of the properties of the system.

For the sake of definiteness, I consider the case of one spatial dimension, which is
suitable for the quasi-one-dimensional system of loosely boundπ -chains discussed above.
However, due to the mean-field character of the forthcoming analysis, the results presented
below are quite general, at least as far as ground-state properties are concerned, and the
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method described in the following may be extended to higher dimensions, where more
complex structures ofexternalCDW may be investigated [4].

It should be pointed out that in one dimension approaches alternative to the one presented
below are possible for investigating the effect of an external potential on a system of
interacting electrons [5–7]. There are, however, good reasons to adopt a complementary
point of view. Indeed, the exact solutions available for a few one-dimensional models
are oftenopaque[6], so extracting physical information requires further elaboration which
mostly relies on quantum-field theory and perturbation theory. The latter is very likely to
be not convergent in the strong-coupling limitU →∞ considered in this paper, in which
case one has to go back to the exact solution (when available) andargue that fixed-point
properties are the same at all couplings [8, 9]. Moreover the instability of the fluid state
is usually seen as the evolution of the renormalized couplings to strong coupling under
the renormalization group, while a clear description of broken-symmetry phases is not
achieved.

On the other hand, slave bosons are known not only to provide an alternative
bosonization scheme [10], but also to give a qualitatively good quasi-particle description of
the infinite-U Hubbard model. In this limiting case, the velocity of spin excitations is indeed
zero [8], and the system behaves as a collection of non-interacting spinless fermions at all
fillings (the hard-core constraint being imposed by the Pauli principle), with the resulting
Fermi velocity determining the behaviour of the charge excitations. Such a scenario is
qualitatively well reproduced within the slave-boson approach [11]. Last but not least,
the slave-boson technique is not specific to one-dimensional systems, and can be directly
extended to higher dimensions.

Indeed, as will become clearer in the following, nothing specific to one-dimensional
systems is discussed in the present paper, where the attention is focused on generic features,
namely on the quasi-particle screening of an external potential in a strongly correlated
system. For the same reason, peculiarities such as the 2kF -instabilities are not taken into
account. The systems which are discussed in the present paper are those in which the
structure of the charge modulation is provided by the external potential.

The plan of the paper is as follows. In section 2, I introduce the Hubbard model for a
system with anexternalCDW, and describe the slave-boson (SB) technique which is suited
for dealing with the limit of an infinitely large intra-atomic repulsion. The conditions for
a CDW to exist and the mean-field ground-state properties of the system are analysed in
section 3. Concluding remarks are found in section 4.

2. The model

I consider the Hubbard model in an external crystal field defined by the Hamiltonian

H̃ = −t
∑
n,σ

(f̃ †n,σ f̃n+1,σ + HC)−
∑
n,σ

(Ieinπ + µ)f̃ †n,σ f̃n,σ + U
∑
n

f̃
†
n↑f̃n↑f̃

†
n↓f̃n↓

wheref̃ †n,σ , f̃n,σ are the fermion operators acting on siten in the Wannier representation,t is
the nearest-neighbour hopping parameter,I is the amplitude of a staggered potential, which
is produced by the external (crystal) field,µ is the chemical potential, andU is the on-
site Coulombic repulsion. The limitU →∞ is usually treated within the SB approach by
introducing additional degrees of freedom to keep track of the empty sites [12]. The fermion
operators are decoupled as products of pseudo-fermion and boson operatorsf̃

†
n,σ → f

†
n,σ bn,
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so the constraint of no double occupancy∑
σ

f̃ †n,σ f̃n,σ 6 1

reads as a completeness relation∑
σ

f †n,σ fn,σ + b†nbn = 1

in the new Fock space. Indeed, empty sites are now regarded as sites occupied by bosons.
The pseudo-fermions play the role of quasi-particles with weak residual interaction. The
constraints have to be imposed on the original Hamiltonian by site-dependent Lagrange
multipliers λn, so the full SB Hamiltonian reads

H = −t
∑
n,σ

(b
†
n+1bnf

†
n,σ fn+1,σ + HC)−

∑
n,σ

(Ieinπ + µ)f †n,σ fn,σ

+
∑
n

λn

(∑
σ

f †n,σ fn,σ + b†nbn − 1

)
.

The mean-field Hamiltonian in the staggered external potential depends on the
expectation values of the SB operators, and the Lagrange multipliers depend on the two
inequivalent sites of the lattice,〈bn〉 = bA, bB, 〈λn〉 = λA, λB, where A and B label the two
inequivalent sublattices, of even and odd site indices respectively. It should be observed
that in the case of nearest-neighbour hopping considered here, the hopping term always
involves sites belonging to different sublattices, so all of the sites are equivalent as far
as hopping is concerned, and only the external potential explicitly breaks the translational
invariance of the lattice. This would no longer be true should next-to-nearest-neighbour
hopping be included. In the present case the diagonalization of the mean-field Hamiltonian
may be performed in a simple way by explicitly separating the A and B sublattices:

Hmf = −tbAbB

∑
j∈A,`=±1

σ

(f
†
j,σ fj+`,σ + f †j+`,σ fj,σ )

+
∑
j∈A
σ

[
(λA − I − µ)f †j,σ fj,σ + (λB + I − µ)f †j+1,σ fj+1,σ

]
+ Ns

2

[
λA(b

2
A − 1)+ λB(b

2
B − 1)

]
whereNs is the number of lattice sites. The above Hamiltonian is immediately transformed
to k-space with respect to the A sublattice (i.e. with respect to the indexj ), the vectork
thus belonging to the Brillouin zone of the A sublattice, i.e. the reduced Brillouin zone of
the original lattice. The transformation rules of the pseudo-fermion operators are defined as

fj,σ =
√

2/Ns
∑
k

Ak,σe−ikj

fj+`,σ =
√

2/Ns
∑
k

Bk,σe−ik(j+`)

for j ∈ A, ` = ±1 [13]. The operatorsA†k,σ andB†k,σ create a Bloch wave of A and B
pseudo-electrons respectively. The two Bloch states are mixed by the hopping term, which
transforms A electrons into B electrons and vice versa. The mean-field Hamiltonian in the
k-space representation is diagonalized by a canonical Bogoliubov transformation [14] to
yield the quasi-particle spectrum

E±k = λ0− µ±
√
(I − λc)2+ 4t2b2

Ab
2
B cos2 k (1)
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where

λ0 = 1

2
(λA + λB) λc = 1

2
(λA − λB)

andk ∈ [−π/2, π/2], the lattice spacing being taken as the unit length. At this point it is
worth noting that the above spectrum is easily generalized to the case of a cubic lattice in
d dimensions in an external potential of wave-vector(π, . . . , π), by taking

cosk→
α=d∑
α=1

coskα.

As will become clearer in the following, the parameterλc describes the quasi-particle
screening of the external potentialI , which is reduced toĨ = I − λc. Besides a trivial
rescaling of the chemical potentialµ̃ = µ − λ0, the effect of strong correlations is also
seen in the reduction of the hopping parametert̃ = tbAbB. Once these renormalizations are
taken into account, the spectrum (1) again takes on the formal aspect of the spectrum of a
non-interacting system in an external staggered potential; in the interacting case, however,
the band-width and the amplitude of the external potential are to be fixed self-consistently.
This formal analogy allows for an immediate comparison between theU = ∞ andU = 0
limits.

3. Mean-field results

The mean-field Hamiltonian in the quasi-particle representation reads

Hmf =
∑
k,σ

(E+k ξ
†
k,σ ξk,σ + E−k η†k,σ ηk,σ )+

Ns

2

[
λ0(b

2
A + b2

B − 2)+ λc(b2
A − b2

B)
]

(2)

where

ξk,σ = ukAk,σ + vkBk,σ
ηk,σ = vkAk,σ − ukBk,σ

are the quasi-particle operators for the upper and lower bands respectively, and

u2
k =

1

2

1− I − λc√
(I − λc)2+ 4t2b2

Ab
2
B cos2 k


v2
k =

1

2

1+ I − λc√
(I − λc)2+ 4t2b2

Ab
2
B cos2 k


are the weights of the A and B pseudo-electrons in the quasi-particle wave-functions. For
I − λc → 0 the quasi-particles are equal admixtures of A and B pseudo-electrons, whereas
in the opposite limitI − λc � 2tbAbB the lower band has mainly A character and the
upper band has mainly B character.

The mean-field parametersbA, bB, λA, λB are determined by solving self-consistency
equations of the form∂〈Hmf 〉 = 0, where the derivatives are taken with respect to the
mean-field parameters and〈· · ·〉 is the average in the ground state [15]. The chemical
potentialµ is chosen to fix the average number of electrons per unit celln = 1− δ, where
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δ is the hole doping with respect to half-filling. AtT = 0 only the lowest bandE−k is
occupied forn < 1. The self-consistency equations are then

n = 2N−1
s

∑
k

2(E−k )

1

2
(b2

A + b2
B) = 1− n

1

2
(b2

A − b2
B) = 2N−1

s

∑
k

R−1
k (λc − I )2(E−k )

λc = N−1
s 4t2(b2

A − b2
B)
∑
k

R−1
k cos2 k 2(E−k )

λ0 = N−1
s 4t2(b2

A + b2
B)
∑
k

R−1
k cos2 k 2(E−k )

(3)

where a factor of 2 in the r.h.s. of each equation is due to the sum over the spin indexσ ,
the sum overk is restricted to the reduced Brillouin zone of the original lattice,2(x) = 1
for x < 0, and zero otherwise, is the zero-temperature limit of the Fermi function, and

Rk =
√
(I − λc)2+ 4t2b2

Ab
2
B cos2 k.

To make the above equations more transparent, observe that the number of electrons on
the two inequivalent sites may be written asnA = n + m and nB = n − m in terms
of the average densityn and the CDW amplitudem. Then, the local constraint imposes
b2

A = 1− nA, b2
B = 1− nB, so b2

B − b2
A = nA − nB = 2m. The renormalization of the

hopping parameter is given by

bAbB =
√
(1− n)2−m2 =

√
δ2−m2

whence it is evident thatm2 6 δ2, i.e. the CDW amplitude may not increase beyondδ,
double occupancy being forbidden. This, in turn, implies that the system cannot sustain a
CDW at half-filling (δ = 0), and a severe reduction of the CDW amplitude is expected for
small δ. In terms of the new parameters the self-consistency equations are

δ = 1− 2N−1
s

∑
k

2(E−k )

m = 2N−1
s

∑
k

R−1
k (I − λc)2(E−k )

λc = N−1
s 8t2m

∑
k

R−1
k cos2 k 2(E−k )

λ0 = δ

m
λc

(4)

with

Rk =
√
(I − λc)2+ 4t2(δ2−m2) cos2 k.

The above equations involve incomplete elliptic integrals, and may be investigated
numerically. However, good insight into their physical content is gained by simplifying
the calculations within logarithmic accuracy. Indeed, all of the functions appearing in (4)
depend onk ∈ [−π/2, π/2] only through cosk (or through

∑α=d
α=1 coskα in d dimensions),

so

N−1
s

∑
k

ϕ(cosk) ≡ 1

2

∫
dε N (ε)ϕ(ε)
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with

N (ε) = 2N−1
s

∑
k

δ(ε − cosk).

I then assumeN (ε) to be a uniform distribution in the interval [0, 1] (or [0, d] in
d dimensions; see e.g. the first reference in [1]). The condition for particle number
conservation immediately fixes the value ofε at the Fermi surface,εF = δ. Moreover,
sinceλ0 = (δ/m)λc, two independent equations remain:
m = I − λc

2t
√
δ2−m2

∫ 1

δ

dε√
z2+ ε2

= z ln
1+√1+ z2

δ +√δ2+ z2

λc = 2tm√
δ2−m2

∫ 1

δ

ε2

√
z2+ ε2

dε = tm√
δ2−m2

[√
1+ z2− δ

√
δ2+ z2−mz

] (5)

where

z = (I − λc)/2t
√
δ2−m2.

Progress towards the solution of the above equations is made by observing that, for a given
δ, m is a function ofz, i.e. it depends onλc only throughz. The limiting behaviours of
m(z) are

m(z) ∼ 1− δ − (1− δ3)/6z2 for z→∞
and

m(z) ∼ −z ln δ for z→ 0.

A sketch ofm(z) is given in figure 1. It must be pointed out that, due to the above-mentioned
formal analogy between theU = ∞ andU = 0 quasi-particle spectra, the functionm(z)
gives also the CDW amplitudem as a function ofz ≡ I/2t in the non-interacting case, so
a comparison is immediately possible.

z

Figure 1. A sketch of the functionm(z), for δ = 0.4.
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At this point, self-consistency is simply imposed by (graphically) solving the two
coupled equations

λc = I − 2tz
√
δ2−m2(z)

λc = tm(z)√
δ2−m2(z)

[√
1+ z2− δ

√
δ2+ z2− zm(z)

] (6)

wherem(z) is shorthand notation for the rightmost expression appearing in the first equation
in (5). The system (6) is solved to yield the self-consistent valuesz̄, λ̄c, whencem̄ = m(z̄)
andλ̄0 = δλ̄c/m̄ are determined (see e.g. figures 2 and 3). Observe that the only dependence
of the self-consistency equations onI is through the intercept of the curve represented by
the first equation in (6), so this curve is rigidly shifted upwards asI is increased.

z

Figure 2. Top: a plot of the functionm(z) for δ = 0.4. Bottom: a plot of the functions
λc1(z), the first equation in (6), andλc2(z), the second equation in (6), forδ = 0.4, t = 1, and
I = 2. The value ofI gives the intercept of the curveλc1(z), which is rigidly shifted upwards
(downwards) asI is increased (decreased). The dashed vertical lines mark the self-consistent
values. The dotted vertical lines mark the point wherem = δ, which is a vertical asymptote for
the curveλc2(z).

In the last part of this section I want to discuss in detail the main properties of the
solutions of (6), addressing in particular the issue of the quasi-particle screening of the
CDW. Since 06 n 6 1, two possibilities arise asI/t is increased.

(i) When 1
2 < n 6 1, nA saturates towardsnA,∞ = 2n − 1 < 1 andnB saturates to

nB,∞ = 1, so the CDW amplitude saturates tom∞ ≡ 1
2(nA,∞ − nB,∞) = δ, i.e. the profile

of the CDW is narrowed asn → 1 (δ → 0), the quasi-particle screening becoming more
and more effective (see below).

(ii) When 06 n 6 1
2, full saturation is possible, andnA,∞ = 0, nB,∞ = 2n, m∞ = n,

as in the non-interacting case.

The behaviour of the screening fieldλc confirms the above discussion. Indeed, the
r.h.s. of the second equation in (6) diverges atm = δ, so in the first case, whenδ < 1− δ,
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z

Figure 3. Top: a plot of the functionm(z) for δ = 0.6. Bottom: a plot of the functions
λc1(z), the first equation in (6), andλc2(z), the second equation in (6), forδ = 0.6, t = 1, and
I = 1. The value ofI gives the intercept of the curveλc1(z), which is rigidly shifted upwards
(downwards) asI is increased (decreased). The dashed vertical lines mark the self-consistent
values.

z̄ stays finite asI/t →∞ since the equation

z̄ ln
1+√1+ z̄2

δ +√δ2+ z̄2
= δ (7)

has a finite solution. Then, from the first equation in (6) it is seen thatλc → I (complete
screening,Ĩ = I − λc → 0). Finally,

m ' δ − (at/I )2
where

a = (1− δ)[
√

1+ z̄2− δ
√
δ2+ z̄2− δz̄]/

√
2δ

and z̄ is the solution of (7). A typical representation for the case whereδ < 1
2 is given in

figure 2.
In the second case,δ > 1− δ (>m) and the r.h.s. of the second equation in (6) is not

divergent, the pointm = δ being unattainable. Then̄z→∞ asI/t →∞ and

m ' 1− δ − (1− δ3)/6z̄2→ 1− δ.
Indeed, the second equation in (6) yields

λc/t ' 2(1− δ)(1− δ3)/3z̄
√

2δ − 1→ 0

(the external potential is unscreened:Ĩ → I ), and from the first equation in (6)

z̄ ' I/2t√2δ − 1→∞
which proves full self-consistency. A typical representation for the case whereδ > 1

2 is
given in figure 3. It should be observed that, in the present low-density regime, CDW
formation may be favoured in the interacting system with respect to the non-interacting
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case. This phenomenon can be understood by observing that, though the external potential
I is essentially unscreened, the hopping parameter is still reduced in the interacting case,
and saturates to

t̃∞ = t
√

2δ − 1< t

so the effective ratioĨ /t̃ > I/t corresponds to a larger CDW amplitude. The physical
interpretation for this behaviour is that, in the low-density limit, the larger the CDW
amplitude, the more the particles are kept apart from one another. The loss of kinetic
energy in the CDW state is thus compensated in the interacting case by a gain in correlation
energy, i.e. a reduction of the tendency towards double occupancy of the system.

4. Conclusions

In this paper I have investigated the competition between strong on-site correlations and
CDW formation in systems where the charge ordering is driven by an external (crystal)
field and long-range electron–electron interactions are screened due to the presence of a
modulation in the chemical environment. In the extreme limit of an infinite on-site repulsion
examined in this paper, a single slave boson was introduced, and a simple quasi-particle
description of the system could be given. A formal analogy between the quasi-particle
spectrum in theU = ∞ case and the band structure for a non-interacting system in the
same external field was exploited to provide a clear scenario for CDW formation in such
systems. Two situations may arise.

(i) In the high-density limit1
2 < n 6 1, the CDW amplitude is reduced with respect to

that in the non-interacting case. The physical mechanism which leads to the suppression
of the CDW amplitude is the quasi-particle screening of the external potential to prevent
double occupancy. This screening mechanism becomes more and more effective asn

increases towards unity. Atn = 1, charge ordering is impossible, and the external field is
completely screened.

(ii) In the low-density limitn < 1
2, the screening mechanism is much weaker and the

CDW amplitude saturates towards the free-particle value as the strength of the external
potential is increased. In this regime, the CDW amplitude may be enhanced with respect to
that in the non-interacting case due to a balance between the loss of kinetic energy and the
gain in correlation energy. Indeed, as the CDW amplitude is increased, particles are kept
further apart, and the tendency towards double occupancy is reduced.

The phase diagram in theI/t versusn plane corresponding to the above scenario is
thus very simple. The system supports a CDW as soon asI/t > 0 and n < 1. This
CDW phase is unique, and there is no further instability in the system asI/t is increased
and/orn is decreased. When the properties of the CDW phase are compared to those of the
corresponding non-interacting (i.e.U = 0) system, it is however clear that the linen = 1

2

separates two regions in which the CDW amplitude in reduced (n > 1
2) and in which it

is enhanced (n < 1
2) with respect to the case whereU = 0. Only in this region is a full

saturation of the CDW amplitude possible asI/t is increased.
The properties described so far refer to the CDW phase, and a comparison with previous

results obtained in an investigation of the stability of the fluid state [6] in one-dimensional
spinless systems is not straightforward. It must be assumed that the results obtained earlier
suffer minor changes when spinning electrons are considered, and that the extrapolation
U →∞ is harmless (see, e.g., [16]) regardless of the ratioI/t and of the fillingδ.
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It may, however, be observed that an external potential of the form

V ∼
∫

dx cos(λx)n(x)

produces terms of the sine–Gordon type only when the periodicity is commensurate with
the electronic density. In the present paper,λ = π , so such terms are produced atn = 1/k,
k = 1, 2, . . ., i.e. either forn = 1 (where no CDW exists), or forn 6 1

2 where the
CDW amplitude is not reduced. Thus the most interesting region,1

2 < n < 1, is beyond
the range of applicability of a direct extension of those results. The reader interested in
commensuration effects in one dimension may refer to [7] and references therein.
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